Astronomy Magazine logo

  • Login/Register
  • Solar System
  • Exotic Objects
  • Upcoming Events
  • Deep-Sky Objects
  • Observing Basics
  • Telescopes and Equipment
  • Astrophotography
  • Space Exploration
  • Human Spaceflight
  • Robotic Spaceflight
  • The Magazine

What is the speed of light? Here’s the history, discovery of the cosmic speed limit

Time travel is one of the most intriguing topics in science.

On one hand, the speed of light is just a number: 299,792,458 meters per second. And on the other, it’s one of the most important constants that appears in nature and defines the relationship of causality itself.

As far as we can measure, it is a constant. It is the same speed for every observer in the entire universe. This constancy was first established in the late 1800’s with the experiments of Albert Michelson and Edward Morley at Case Western Reserve University . They attempted to measure changes in the speed of light as the Earth orbited around the Sun. They found no such variation, and no experiment ever since then has either.

Observations of the cosmic microwave background, the light released when the universe was 380,000 years old, show that the speed of light hasn’t measurably changed in over 13.8 billion years.

In fact, we now define the speed of light to be a constant, with a precise speed of 299,792,458 meters per second. While it remains a remote possibility in deeply theoretical physics that light may not be a constant, for all known purposes it is a constant, so it’s better to just define it and move on with life.

How was the speed of light first measured?

In 1676 the Danish astronomer Ole Christensen Romer made the first quantitative measurement of how fast light travels. He carefully observed the orbit of Io, the innermost moon of Jupiter. As the Earth circles the Sun in its own orbit, sometimes it approaches Jupiter and sometimes it recedes away from it. When the Earth is approaching Jupiter, the path that light has to travel from Io is shorter than when the Earth is receding away from Jupiter. By carefully measuring the changes to Io’s orbital period, Romer calculated a speed of light of around 220,000 kilometers per second.

Observations continued to improve until by the 19 th century astronomers and physicists had developed the sophistication to get very close to the modern value. In 1865, James Clerk Maxwell made a remarkable discovery. He was investigating the properties of electricity and magnetism, which for decades had remained mysterious in unconnected laboratory experiments around the world. Maxwell found that electricity and magnetism were really two sides of the same coin, both manifestations of a single electromagnetic force.

James Clerk Maxwell contributed greatly to the discover of the speed of light.

As Maxwell explored the consequences of his new theory, he found that changing magnetic fields can lead to changing electric fields, which then lead to a new round of changing magnetic fields. The fields leapfrog over each other and can even travel through empty space. When Maxwell went to calculate the speed of these electromagnetic waves, he was surprised to see the speed of light pop out – the first theoretical calculation of this important number.

What is the most precise measurement of the speed of light?

Because it is defined to be a constant, there’s no need to measure it further. The number we’ve defined is it, with no uncertainty, no error bars. It’s done. But the speed of light is just that – a speed. The number we choose to represent it depends on the units we use: kilometers versus miles, seconds versus hours, and so on. In fact, physicists commonly just set the speed of light to be 1 to make their calculations easier. So instead of trying to measure the speed light travels, physicists turn to more precisely measuring other units, like the length of the meter or the duration of the second. In other words, the defined value of the speed of light is used to establish the length of other units like the meter.

How does light slow down?

Yes, the speed of light is always a constant. But it slows down whenever it travels through a medium like air or water. How does this work? There are a few different ways to present an answer to this question, depending on whether you prefer a particle-like picture or a wave-like picture.

In a particle-like picture, light is made of tiny little bullets called photons. All those photons always travel at the speed of light, but as light passes through a medium those photons get all tangled up, bouncing around among all the molecules of the medium. This slows down the overall propagation of light, because it takes more time for the group of photons to make it through.

In a wave-like picture, light is made of electromagnetic waves. When these waves pass through a medium, they get all the charged particles in motion, which in turn generate new electromagnetic waves of their own. These interfere with the original light, forcing it to slow down as it passes through.

Either way, light always travels at the same speed, but matter can interfere with its travel, making it slow down.

Why is the speed of light important?

The speed of light is important because it’s about way more than, well, the speed of light. In the early 1900’s Einstein realized just how special this speed is. The old physics, dominated by the work of Isaac Newton, said that the universe had a fixed reference frame from which we could measure all motion. This is why Michelson and Morley went looking for changes in the speed, because it should change depending on our point of view. But their experiments showed that the speed was always constant, so what gives?

Einstein decided to take this experiment at face value. He assumed that the speed of light is a true, fundamental constant. No matter where you are, no matter how fast you’re moving, you’ll always see the same speed.

This is wild to think about. If you’re traveling at 99% the speed of light and turn on a flashlight, the beam will race ahead of you at…exactly the speed of light, no more, no less. If you’re coming from the opposite direction, you’ll still also measure the exact same speed.

This constancy forms the basis of Einstein’s special theory of relativity, which tells us that while all motion is relative – different observers won’t always agree on the length of measurements or the duration of events – some things are truly universal, like the speed of light.

Can you go faster than light speed?

Nope. Nothing can. Any particle with zero mass must travel at light speed. But anything with mass (which is most of the universe) cannot. The problem is relativity. The faster you go, the more energy you have. But we know from Einstein’s relativity that energy and mass are the same thing. So the more energy you have, the more mass you have, which makes it harder for you to go even faster. You can get as close as you want to the speed of light, but to actually crack that barrier takes an infinite amount of energy. So don’t even try.

How is the speed at which light travels related to causality?

If you think you can find a cheat to get around the limitations of light speed, then I need to tell you about its role in special relativity. You see, it’s not just about light. It just so happens that light travels at this special speed, and it was the first thing we discovered to travel at this speed. So it could have had another name. Indeed, a better name for this speed might be “the speed of time.”

Related: Is time travel possible? An astrophysicist explains

We live in a universe of causes and effects. All effects are preceded by a cause, and all causes lead to effects. The speed of light limits how quickly causes can lead to effects. Because it’s a maximum speed limit for any motion or interaction, in a given amount of time there’s a limit to what I can influence. If I want to tap you on the shoulder and you’re right next to me, I can do it right away. But if you’re on the other side of the planet, I have to travel there first. The motion of me traveling to you is limited by the speed of light, so that sets how quickly I can tap you on the shoulder – the speed light travels dictates how quickly a single cause can create an effect.

The ability to go faster than light would allow effects to happen before their causes. In essence, time travel into the past would be possible with faster-than-light travel. Since we view time as the unbroken chain of causes and effects going from the past to the future, breaking the speed of light would break causality, which would seriously undermine our sense of the forward motion of time.

Why does light travel at this speed?

No clue. It appears to us as a fundamental constant of nature. We have no theory of physics that explains its existence or why it has the value that it does. We hope that a future understanding of nature will provide this explanation, but right now all investigations are purely theoretical. For now, we just have to take it as a given.

Artist's impression of colliding neutron stars

BlackHoleFinder invites you to discover new black holes

light speed travel

Nuclear bombs really could deflect asteroids, lab tests suggest

simulation of merging supermassive black holes

Why weren’t astronomers sure that supermassive black holes could merge?

Apollo astronaut on the Moon

Traces of Earth’s earliest atmosphere could be buried on the Moon

Albireo (Beta [β] Cygni) is a classic example of a double star with contrasting colors.

What gives stars their colors?

Artist's illustration of giant black hole jets in the early universe

Black hole caught blasting jets out into the cosmic void

light speed travel

’Starry Night’ captures the turbulent physics of why stars twinkle

light speed travel

The “Wow! Signal,” not surprisingly, was a dud

Lunar eclipse geometry

Why can we still see the Moon’s disk during a total lunar eclipse?

Expert Voices

Why is the speed of light the way it is?

It's just plain weird.

Einstein's theory of special relativity tells us the speed of light is 186,000 miles per second (300 million meters per second).

Paul M. Sutter is an astrophysicist at SUNY Stony Brook and the Flatiron Institute, host of Ask a Spaceman and Space Radio , and author of " How to Die in Space ." He contributed this article to Space.com's Expert Voices: Op-Ed & Insights . 

We all know and love the speed of light — 299,792,458 meters per second — but why does it have the value that it does? Why isn't it some other number? And why do we care so much about some random speed of electromagnetic waves? Why did it become such a cornerstone of physics? 

Well, it's because the speed of light is just plain weird.

Related: Constant speed of light: Einstein's special relativity survives a high-energy test

Putting light to the test

The first person to realize that light does indeed have a speed at all was an astronomer by the name of Ole Romer. In the late 1600s, he was obsessed with some strange motions of the moon Io around Jupiter. Every once in a while, the great planet would block our view of its little moon, causing an eclipse, but the timing between eclipses seemed to change over the course of the year. Either something funky was happening with the orbit of Io — which seemed suspicious — or something else was afoot.

After a couple years of observations, Romer made the connection. When we see Io get eclipsed, we're in a certain position in our own orbit around the sun. But by the next time we see another eclipse, a few days later, we're in a slightly different position, maybe closer or farther away from Jupiter than the last time. If we are farther away than the last time we saw an eclipse, then that means we have to wait a little bit of extra time to see the next one because it takes that much longer for the light to reach us, and the reverse is true if we happen to be a little bit closer to Jupiter.

The only way to explain the variations in the timing of eclipses of Io is if light has a finite speed.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Making it mean something

Continued measurements over the course of the next few centuries solidified the measurement of the speed of light, but it wasn't until the mid-1800s when things really started to come together. That's when the physicist James Clerk Maxwell accidentally invented light.

Maxwell had been playing around with the then-poorly-understood phenomena of electricity and magnetism when he discovered a single unified picture that could explain all the disparate observations. Laying the groundwork for what we now understand to be the electromagnetic force , in those equations he discovered that changing electric fields can create magnetic fields, and vice versa. This allows waves of electricity to create waves of magnetism, which go on to make waves of electricity and back and forth and back and forth, leapfrogging over each other, capable of traveling through space.

And when he went to calculate the speed of these so-called electromagnetic waves, Maxwell got the same number that scientists had been measuring as the speed of light for centuries. Ergo, light is made of electromagnetic waves and it travels at that speed, because that is exactly how quickly waves of electricity and magnetism travel through space.

And this was all well and good until Einstein came along a few decades later and realized that the speed of light had nothing to do with light at all. With his special theory of relativity , Einstein realized the true connection between time and space, a unified fabric known as space-time. But as we all know, space is very different than time. A meter or a foot is very different than a second or a year. They appear to be two completely different things.

So how could they possibly be on the same footing?

There needed to be some sort of glue, some connection that allowed us to translate between movement in space and movement in time. In other words, we need to know how much one meter of space, for example, is worth in time. What's the exchange rate? Einstein found that there was a single constant, a certain speed, that could tell us how much space was equivalent to how much time, and vice versa.

Einstein's theories didn't say what that number was, but then he applied special relativity to the old equations of Maxwell and found that this conversion rate is exactly the speed of light.

Of course, this conversion rate, this fundamental constant that unifies space and time, doesn't know what an electromagnetic wave is, and it doesn't even really care. It's just some number, but it turns out that Maxwell had already calculated this number and discovered it without even knowing it. That's because all massless particles are able to travel at this speed, and since light is massless, it can travel at that speed. And so, the speed of light became an important cornerstone of modern physics.

But still, why that number, with that value, and not some other random number? Why did nature pick that one and no other? What's going on?

Related: The genius of Albert Einstein: his life, theories and impact on science

Making it meaningless

Well, the number doesn't really matter. It has units after all: meters per second. And in physics any number that has units attached to it can have any old value it wants, because it means you have to define what the units are. For example, in order to express the speed of light in meters per second, first you need to decide what the heck a meter is and what the heck a second is. And so the definition of the speed of light is tied up with the definitions of length and time.

In physics, we're more concerned with constants that have no units or dimensions — in other words, constants that appear in our physical theories that are just plain numbers. These appear much more fundamental, because they don't depend on any other definition. Another way of saying it is that, if we were to meet some alien civilization , we would have no way of understanding their measurement of the speed of light, but when it comes to dimensionless constants, we can all agree. They're just numbers.

One such number is known as the fine structure constant, which is a combination of the speed of light, Planck's constant , and something known as the permittivity of free space. Its value is approximately 0.007. 0.007 what? Just 0.007. Like I said, it's just a number.

So on one hand, the speed of light can be whatever it wants to be, because it has units and we need to define the units. But on the other hand, the speed of light can't be anything other than exactly what it is, because if you were to change the speed of light, you would change the fine structure constant. But our universe has chosen the fine structure constant to be approximately 0.007, and nothing else. That is simply the universe we live in, and we get no choice about it at all. And since this is fixed and universal, the speed of light has to be exactly what it is.

So why is the fine structure constant exactly the number that it is, and not something else? Good question. We don't know.

Learn more by listening to the episode "Why is the speed of light the way it is?" on the Ask A Spaceman podcast, available on iTunes and on the Web at http://www.askaspaceman.com. Thanks to Robert H, Michael E., @DesRon94, Evan W., Harry A., @twdixon, Hein P., Colin E., and Lothian53 for the questions that led to this piece! Ask your own question on Twitter using #AskASpaceman or by following Paul @PaulMattSutter and facebook.com/PaulMattSutter.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Paul M. Sutter is an astrophysicist at SUNY Stony Brook and the Flatiron Institute in New York City. Paul received his PhD in Physics from the University of Illinois at Urbana-Champaign in 2011, and spent three years at the Paris Institute of Astrophysics, followed by a research fellowship in Trieste, Italy, His research focuses on many diverse topics, from the emptiest regions of the universe to the earliest moments of the Big Bang to the hunt for the first stars. As an "Agent to the Stars," Paul has passionately engaged the public in science outreach for several years. He is the host of the popular "Ask a Spaceman!" podcast, author of "Your Place in the Universe" and "How to Die in Space" and he frequently appears on TV — including on The Weather Channel, for which he serves as Official Space Specialist.

The bubbling surface of a distant star was captured on video for the 1st time ever

Just how dark is the universe? NASA's New Horizons probe gives us best estimate yet

SpaceX launches 20 Starlink internet satellites from California (photos)

  • voidpotentialenergy This is just my opinion but i think L speed is it's speed because the particle part of it is the fastest it can interact with the quanta distance in quantum fluctuation. Light is particle and wave so the wave happens in the void between quanta. Gravity probably travels in that void and why gravity seems instant. Reply
  • rod The space.com article wraps up the discussion with, "So on one hand, the speed of light can be whatever it wants to be, because it has units and we need to define the units. But on the other hand, the speed of light can't be anything other than exactly what it is, because if you were to change the speed of light, you would change the fine structure constant. But our universe has chosen the fine structure constant to be approximately 0.007, and nothing else. That is simply the universe we live in, and we get no choice about it at all. And since this is fixed and universal, the speed of light has to be exactly what it is. So why is the fine structure constant exactly the number that it is, and not something else? Good question. We don't know." It seems that the *universe* made this decision, *But our universe has chosen the fine structure constant to be...* I did not know that the universe was capable of making decisions concerning constants used in physics. E=mc^2 is a serious constant. Look at nuclear weapons development, explosive yields, and stellar evolution burn rates for p-p chain and CNO fusion rates. The report indicates why alpha (fine structure constant) is what it is and c is what it is, *We don't know*. Reply
Admin said: We all know and love the speed of light, but why does it have the value that it does? Why isn't it some other number? And why did it become such a cornerstone of physics? Why is the speed of light the way it is? : Read more
rod said: The space.com article wraps up the discussion with, "So on one hand, the speed of light can be whatever it wants to be, because it has units and we need to define the units. But on the other hand, the speed of light can't be anything other than exactly what it is, because if you were to change the speed of light, you would change the fine structure constant. But our universe has chosen the fine structure constant to be approximately 0.007, and nothing else. That is simply the universe we live in, and we get no choice about it at all. And since this is fixed and universal, the speed of light has to be exactly what it is. So why is the fine structure constant exactly the number that it is, and not something else? Good question. We don't know." It seems that the *universe* made this decision, *But our universe has chosen the fine structure constant to be...* I did not know that the universe was capable of making decisions concerning constants used in physics. E=mc^2 is a serious constant. Look at nuclear weapons development, explosive yields, and stellar evolution burn rates for p-p chain and CNO fusion rates. The report indicates why alpha (fine structure constant) is what it is and c is what it is, *We don't know*.
  • rod FYI. When someone says *the universe has chosen*, I am reminded of these five lessons from a 1982 Fed. court trial. The essential characteristics of science are: It is guided by natural law; It has to be explanatory by reference to natural law; It is testable against the empirical world; Its conclusions are tentative, i.e., are not necessarily the final word; and It is falsifiable. Five important points about science. Reply
  • Gary If the universe is expanding , how can the speed of light be constant ( miles per second , if each mile is getting longer ) ? Can light's velocity be constant while the universe expands ? So, with the expansion of the universe , doesn't the speed of light need to increase in order to stay at a constant velocity in miles per second ? Or, do the miles in the universe remain the same length as the universe 'adds' miles to its diameter ? Are the miles lengthening or are they simply being added / compounded ? Reply
  • Gary Lets say we're in outer space and we shoot a laser through a block of glass. What causes the speed of the laser light to return to the speed it held prior to entering the block of glass ? Is there some medium in the vacuum of space that governs the speed of light ? Do the atoms in the glass push it back up to its original speed. If so, why don't those same atoms constantly push the light while it travels through the block of glass ? Reply
Gary said: Lets say we're in outer space and we shoot a laser through a block of glass. What causes the speed of the laser light to return to the speed it held prior to entering the block of glass ? Is there some medium in the vacuum of space that governs the speed of light ? Do the atoms in the glass push it back up to its original speed. If so, why don't those same atoms constantly push the light while it travels through the block of glass ?
Gary said: If the universe is expanding , how can the speed of light be constant ( miles per second , if each mile is getting longer ) ? Can light's velocity be constant while the universe expands ? So, with the expansion of the universe , doesn't the speed of light need to increase in order to stay at a constant velocity in miles per second ? Or, do the miles in the universe remain the same length as the universe 'adds' miles to its diameter ? Are the miles lengthening or are they simply being added / compounded ?
  • View All 31 Comments

Most Popular

  • 2 'We are close:' SETI astrobiologist Nathalie Cabrol on the search for life
  • 3 Tropical Storm Helene delays SpaceX's Crew-9 astronaut launch to Sept. 28
  • 4 US Space Force partners with India to open a microchip factory for next-gen tech
  • 5 'Warhammer 40K: Space Marine 2' brings glory to the Emperor (review)

light speed travel

What is the speed of light?

Light is faster than anything else in the known universe, though its speed can change depending on what it's passing through.

blue and purple beams of light blasting toward the viewer

The universe has a speed limit, and it's the speed of light. Nothing can travel faster than light — not even our best spacecraft — according to the laws of physics.

So, what is the speed of light? 

Light moves at an incredible 186,000 miles per second (300,000 kilometers per second), equivalent to almost 700 million mph (more than 1 billion km/h). That's fast enough to circumnavigate the globe 7.5 times in one second, while a typical passenger jet would take more than two days to go around once (and that doesn't include stops for fuel or layovers!). 

Light moves so fast that, for much of human history, we thought it traveled instantaneously. As early as the late 1600s, though, scientist Ole Roemer was able to measure the speed of light (usually referred to as c ) by using observations of Jupiter's moons, according to Britannica . 

Around the turn of the 19th century, physicist James Clerk Maxwell created his theories of electromagnetism . Light is itself made up of electric and magnetic fields, so electromagnetism could describe the behavior and motion of light — including its theoretical speed. That value was 299,788 kilometers per second, with a margin of error of plus or minus 30. In the 1970s, physicists used lasers to measure the speed of light with much greater precision, leaving an error of only 0.001. Nowadays, the speed of light is used to define units of length, so its value is fixed; humans have essentially agreed the speed of light is 299,792.458 kilometers per second, exactly.

Light doesn't always have to go so fast, though. Depending on what it's traveling through — air, water, diamonds, etc. — it can slow down. The official speed of light is measured as if it's traveling in a vacuum, a space with no air or anything to get in the way. You can most clearly see differences in the speed of light in something like a prism, where certain energies of light bend more than others, creating a rainbow.

— How many moons does Earth have ?

— What would happen if the moon were twice as close to Earth?

— If you're on the moon, does the Earth appear to go through phases?

Interestingly, the speed of light is no match for the vast distances of space, which is itself a vacuum. It takes 8 minutes for light from the sun to reach Earth, and a couple years for light from the other closest stars (like Proxima Centauri) to get to our planet. This is why astronomers use the unit light-years — the distance light can travel in one year — to measure vast distances in space.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Because of this universal speed limit, telescopes are essentially time machines . When astronomers look at a star 500 light-years away, they're looking at light from 500 years ago. Light from around 13 billion light-years away (equivalently, 13 billion years ago) shows up as the cosmic microwave background, remnant radiation from the Big Bang in the universe's infancy. The speed of light isn't just a quirk of physics; it has enabled modern astronomy as we know it, and it shapes the way we see the world — literally.

Briley Lewis (she/her) is a freelance science writer and Ph.D. Candidate/NSF Fellow at the University of California, Los Angeles studying Astronomy & Astrophysics. Follow her on Twitter  @briles_34 or visit her website  www.briley-lewis.com .

The James Webb telescope has brought cosmology to a tipping point. Will it soon reveal new physics?

One of the universe's biggest paradoxes could be even weirder than we thought, James Webb telescope study reveals

9,000-year-old rock art of people swimming in what's now the arid Sahara

Most Popular

  • 2 James Webb Telescope goes 'extreme' and spots baby stars at the edge of the Milky Way (image)
  • 3 Why can't you suffocate by holding your breath?
  • 4 Space photo of the week: Entangled galaxies form cosmic smiley face in new James Webb telescope image
  • 5 Did Roman gladiators really fight to the death?

light speed travel

NASA's Guide to Near-light-speed Travel

  • Released Friday, August 14, 2020
  • Produced by:
  • Chris Smith
  • Written by:
  • Visualizations by:
  • Krystofer Kim
  • Scientific consulting by:
  • Ryan DeRosa
  • and Scott Noble

Near-light-speed Travel GuideThis handy video will help acquaint you with the quirks of near-light-speed travel, expected travel times, and the distances to some popular (at least, we think so) destinations!Credit: NASA's Goddard Space Flight CenterMusic: "The Tiptoe Strut" from Universal Production MusicComplete transcript available.

Near Light Speed 101: Effects of Near-light-speed TravelTravel at near the speed of light offers a few quirks you should be aware of, from time and space weirdness to protecting yourself from dangerous cosmic particles. This video covers some of the important ones!Credit: NASA's Goddard Space Flight CenterMusic: "Dinner With the Vicar" from Universal Production MusicComplete transcript available.

Near Light Speed 101: Near-light-speed Travel TimesEven if you've figured out how to travel at almost the speed of light, the universe is still a huge place! Watch this video to learn more about how long it takes to cruise around the cosmos.Credit: NASA's Goddard Space Flight CenterMusic: "Dinner With the Vicar" from Universal Production MusicComplete transcript available.

  • Astrophysics

Please give credit for this item to: NASA's Goddard Space Flight Center

  • Chris Smith  (USRA)
  • Krystofer Kim  (USRA)
  • Ryan DeRosa  (NASA/GSFC)
  • Scott Noble  (NASA/GSFC)

Release date

This page was originally published on Friday, August 14, 2020. This page was last updated on Wednesday, May 3, 2023 at 1:44 PM EDT.

  • Narrated Movies

Snap It! An Eclipse Photo Adventure (Trailer)

Nasa’s guide to visiting a gamma-ray burst, nasa's field guide to black holes, nasa's guide to black hole safety, you may also like..., no results., an error occurred. please reload this page and try again..

abstract light in a tunnel

A Groundbreaking Scientific Discovery Just Gave Humanity the Keys to Interstellar Travel

In a first, this warp drive actually obeys the laws of physics.

With the ease of starting a car , the crew of the USS Enterprise starship streaks to a new adventure in every episode of Star Trek , somehow traveling at several times the speed of light . This sci-fi mode of practical interstellar travel, which television audiences first saw in 1966, inspired Mexican physicist Miguel Alcubierre Moya to investigate the feasibility of a real method for light-speed propulsion. Decades later, he published his cutting-edge research to an astonished community of theoretical physicists. The eponymous Alcubierre warp drive hypothetically contracts the spacetime in front of a spaceship while expanding the spacetime behind it, so that the ship moves from Point A to Point B at an “arbitrarily fast” speed. By distorting spacetime—the continuum enfolding the three dimensions of space and time—an observer outside the ship’s “warp bubble” would see the ship moving faster than the speed of light, even though observers inside the craft would feel no acceleration forces.

If a superluminal—meaning faster than the speed of light—warp drive like Alcubierre’s worked, it would revolutionize humanity’s endeavors across the universe , allowing us, perhaps, to reach Alpha Centauri, our closest star system, in days or weeks even though it’s four light years away.

However, the Alcubierre drive has a glaring problem: the force behind its operation, called “negative energy,” involves exotic particles—hypothetical matter that, as far as we know, doesn’t exist in our universe. Described only in mathematical terms, exotic particles act in unexpected ways, like having negative mass and working in opposition to gravity (in fact, it has “anti-gravity”). For the past 30 years, scientists have been publishing research that chips away at the inherent hurdles to light speed revealed in Alcubierre’s foundational 1994 article published in the peer-reviewed journal Classical and Quantum Gravity .

Now, researchers at the New York City-based think tank Applied Physics believe they’ve found a creative new approach to solving the warp drive’s fundamental roadblock. Along with colleagues from other institutions, the team envisioned a “positive energy” system that doesn’t violate the known laws of physics . It’s a game-changer, say two of the study’s authors: Gianni Martire, CEO of Applied Physics, and Jared Fuchs, Ph.D., a senior scientist there. Their work, also published in Classical and Quantum Gravity in late April, could be the first chapter in the manual for interstellar spaceflight.

POSITIVE ENERGY MAKES all the difference. Imagine you are an astronaut in space, pushing a tennis ball away from you. Instead of moving away, the ball pushes back, to the point that it would “take your hand off” if you applied enough pushing force, Martire tells Popular Mechanics . That’s a sign of negative energy, and, though the Alcubierre drive design requires it, there’s no way to harness it.

Instead, regular old positive energy is more feasible for constructing the “ warp bubble .” As its name suggests, it’s a spherical structure that surrounds and encloses space for a passenger ship using a shell of regular—but incredibly dense—matter. The bubble propels the spaceship using the powerful gravity of the shell, but without causing the passengers to feel any acceleration. “An elevator ride would be more eventful,” Martire says.

That’s because the density of the shell, as well as the pressure it exerts on the interior, is controlled carefully, Fuchs tells Popular Mechanics . Nothing can travel faster than the speed of light, according to the gravity-bound principles of Albert Einstein’s theory of general relativity . So the bubble is designed such that observers within their local spacetime environment—inside the bubble—experience normal movement in time. Simultaneously, the bubble itself compresses the spacetime in front of the ship and expands it behind the ship, ferrying itself and the contained craft incredibly fast. The walls of the bubble generate the necessary momentum, akin to the momentum of balls rolling, Fuchs explains. “It’s the movement of the matter in the walls that actually creates the effect for passengers on the inside.”

Building on its 2021 paper published in Classical and Quantum Gravity —which details the same researchers’ earlier work on physical warp drives—the team was able to model the complexity of the system using its own computational program, Warp Factory. This toolkit for modeling warp drive spacetimes allows researchers to evaluate Einstein’s field equations and compute the energy conditions required for various warp drive geometries. Anyone can download and use it for free . These experiments led to what Fuchs calls a mini model, the first general model of a positive-energy warp drive. Their past work also demonstrated that the amount of energy a warp bubble requires depends on the shape of the bubble; for example, the flatter the bubble in the direction of travel, the less energy it needs.

THIS LATEST ADVANCEMENT suggests fresh possibilities for studying warp travel design, Erik Lentz, Ph.D., tells Popular Mechanics . In his current position as a staff physicist at Pacific Northwest National Laboratory in Richland, Washington, Lentz contributes to research on dark matter detection and quantum information science research. His independent research in warp drive theory also aims to be grounded in conventional physics while reimagining the shape of warped space. The topic needs to overcome many practical hurdles, he says.

Controlling warp bubbles requires a great deal of coordination because they involve enormous amounts of matter and energy to keep the passengers safe and with a similar passage of time as the destination. “We could just as well engineer spacetime where time passes much differently inside [the passenger compartment] than outside. We could miss our appointment at Proxima Centauri if we aren’t careful,” Lentz says. “That is still a risk if we are traveling less than the speed of light.” Communication between people inside the bubble and outside could also become distorted as it passes through the curvature of warped space, he adds.

While Applied Physics’ current solution requires a warp drive that travels below the speed of light, the model still needs to plug in a mass equivalent to about two Jupiters. Otherwise, it will never achieve the gravitational force and momentum high enough to cause a meaningful warp effect. But no one knows what the source of this mass could be—not yet, at least. Some research suggests that if we could somehow harness dark matter , we could use it for light-speed travel, but Fuchs and Martire are doubtful, since it’s currently a big mystery (and an exotic particle).

Despite the many problems scientists still need to solve to build a working warp drive, the Applied Physics team claims its model should eventually get closer to light speed. And even if a feasible model remains below the speed of light, it’s a vast improvement over today’s technology. For example, traveling at even half the speed of light to Alpha Centauri would take nine years. In stark contrast, our fastest spacecraft, Voyager 1—currently traveling at 38,000 miles per hour—would take 75,000 years to reach our closest neighboring star system.

Of course, as you approach the actual speed of light, things get truly weird, according to the principles of Einstein’s special relativity . The mass of an object moving faster and faster would increase infinitely, eventually requiring an infinite amount of energy to maintain its speed.

“That’s the chief limitation and key challenge we have to overcome—how can we have all this matter in our [bubble], but not at such a scale that we can never even put it together?” Martire says. It’s possible the answer lies in condensed matter physics, he adds. This branch of physics deals particularly with the forces between atoms and electrons in matter. It has already proven fundamental to several of our current technologies, such as transistors, solid-state lasers, and magnetic storage media.

The other big issue is that current models allow a stable warp bubble, but only for a constant velocity. Scientists still need to figure out how to design an initial acceleration. On the other end of the journey, how will the ship slow down and stop? “It’s like trying to grasp the automobile for the first time,” Martire says. “We don’t have an engine just yet, but we see the light at the end of the tunnel.” Warp drive technology is at the stage of 1882 car technology, he says: when automobile travel was possible, but it still looked like a hard, hard problem.

The Applied Physics team believes future innovations in warp travel are inevitable. The general positive energy model is a first step. Besides, you don’t need to zoom at light speed to achieve distances that today are just a dream, Martire says. “Humanity is officially, mathematically, on an interstellar track.”

Headshot of Manasee Wagh

Before joining Popular Mechanics , Manasee Wagh worked as a newspaper reporter, a science journalist, a tech writer, and a computer engineer. She’s always looking for ways to combine the three greatest joys in her life: science, travel, and food.

preview for Popular Mechanics All Sections

Why Everything We Know About Gravity May Be Wrong

futuristic lab equipment in a pool of water

Dark Matter Could Unlock a Limitless Energy Source

nebula with womans face

The Source of All Consciousness May Be Black Holes

human hands stretched out to the burning sun, ethereal and unreal concepts of universe, spiritual and natural powers otherwise, fires burning down the past life, natural disaster, climate change and global warming, inferno, hell and chaos ultimate conceptual shot

Immortality Is Impossible Until We Beat Physics

lunar collider illustration

How a Lunar Supercollider Could Upend Physics

rainbow colored brain with lightning bolts all over it before a rainbow galaxy background with tiny stars

Is Consciousness Everywhere All at Once?

abstract swirl patterns light

One Particle Could Shatter Our Concept of Reality

computer artwork of black hole

Do Black Holes Die?

the flash, ezra miller as the flash, 2023 © warner bros courtesy everett collection

Are Multiverse Films Like ‘The Flash’ Realistic?

three clocks that are warped against a starry blue background

Why Time Reflections Are a ‘Holy Grail’ in Physics

abstract twisted ribbon with striped pattern

Why Our Existence Always Contains Some Uncertainty

woman floating in sphere in binary code

Copies of You Could Live Inside Quantum Computers

  • Search Please fill out this field.
  • Manage Your Subscription
  • Give a Gift Subscription
  • Newsletters
  • Sweepstakes
  • Space Travel + Astronomy

Here's What Actually Happens When You Travel at the Speed of Light, According to NASA

NASA created a fun video to answer all of our burning questions about near-light-speed travel.

light speed travel

Ever wish you could travel at the speed of light to your favorite destinations ? Once you see the reality of that speed, you may rethink everything.

"There are some important things you should probably know about approaching the speed of light," NASA's video, Guide to Near-light-speed Travel , explains. "First, a lot of weird things can happen, like time and space getting all bent out of shape."

According to the video, if you're traveling at nearly the speed of light, the clock inside your rocket would show it takes less time to travel to your destination than it would on Earth. But, since the clocks at home would be moving at a standard rate you'd return home to everyone else being quite a bit older.

"Also, because you're going so fast, what would otherwise be just a few hydrogen atoms that you'd run into quickly becomes a lot of dangerous particles. So you should probably have shields that keep them from frying your ship and also you."

Finally, the video tackles the fact that even if you were moving at the speed of light, the "universe is also a very big place, so you might be in for some surprises." For example, your rocket's clock will say it takes about nine months to get from Earth to the edge of the solar system. An Earth clock would say it took about a year and a half. Fortunately, NASA astronauts have a slew of tips for avoiding jet lag along the way.

"If you want to get to farther out vacation spots," the video explains, "you'll probably need more than a few extra snacks. A trip to the Andromeda Galaxy, our nearest large neighbor galaxy, can take over one million years. And a trip to the farthest known galaxy where it currently sits might take over 15 billion years, which is more vacation time than I think I'll ever have."

The video doesn't explain how your rocket will travel at the speed of light. Our technology just isn't there yet, but maybe the aliens will share that tech with us soon. Until then, you can track the first crew launch of Artemis II , a rocket that will fly around the moon in 2024 before making its first lunar landing in 2025.

Related Articles

share this!

May 31, 2019

Three ways to travel at (nearly) the speed of light

by Mara Johnson-Groh, NASA's Goddard Space Flight Center

Three ways to travel at (nearly) the speed of light

One hundred years ago today, on May 29, 1919, measurements of a solar eclipse offered verification for Einstein's theory of general relativity. Even before that, Einstein had developed the theory of special relativity, which revolutionized the way we understand light. To this day, it provides guidance on understanding how particles move through space—a key area of research to keep spacecraft and astronauts safe from radiation.

The theory of special relativity showed that particles of light, photons, travel through a vacuum at a constant pace of 670,616,629 miles per hour—a speed that's immensely difficult to achieve and impossible to surpass in that environment. Yet all across space, from black holes to our near-Earth environment, particles are, in fact, being accelerated to incredible speeds, some even reaching 99.9% the speed of light.

One of NASA's jobs is to better understand how these particles are accelerated. Studying these superfast, or relativistic, particles can ultimately help protect missions exploring the solar system, traveling to the Moon, and they can teach us more about our galactic neighborhood: A well-aimed near-light-speed particle can trip onboard electronics and too many at once could have negative radiation effects on space-faring astronauts as they travel to the Moon—or beyond.

Here are three ways that acceleration happens.

1. Electromagnetic Fields

Most of the processes that accelerate particles to relativistic speeds work with electromagnetic fields—the same force that keeps magnets on your fridge. The two components, electric and magnetic fields, like two sides of the same coin, work together to whisk particles at relativistic speeds throughout the universe.

In essence, electromagnetic fields accelerate charged particles because the particles feel a force in an electromagnetic field that pushes them along, similar to how gravity pulls at objects with mass. In the right conditions, electromagnetic fields can accelerate particles at near-light-speed.

On Earth, electric fields are often specifically harnessed on smaller scales to speed up particles in laboratories. Particle accelerators, like the Large Hadron Collider and Fermilab, use pulsed electromagnetic fields to accelerate charged particles up to 99.99999896% the speed of light. At these speeds, the particles can be smashed together to produce collisions with immense amounts of energy. This allows scientists to look for elementary particles and understand what the universe was like in the very first fractions of a second after the Big Bang.

2. Magnetic Explosions

Magnetic fields are everywhere in space, encircling Earth and spanning the solar system. They even guide charged particles moving through space, which spiral around the fields.

When these magnetic fields run into each other, they can become tangled. When the tension between the crossed lines becomes too great, the lines explosively snap and realign in a process known as magnetic reconnection. The rapid change in a region's magnetic field creates electric fields, which causes all the attendant charged particles to be flung away at high speeds. Scientists suspect magnetic reconnection is one way that particles—for example, the solar wind, which is the constant stream of charged particles from the sun—is accelerated to relativistic speeds.

Those speedy particles also create a variety of side-effects near planets. Magnetic reconnection occurs close to us at points where the sun's magnetic field pushes against Earth's magnetosphere—its protective magnetic environment. When magnetic reconnection occurs on the side of Earth facing away from the sun, the particles can be hurled into Earth's upper atmosphere where they spark the auroras. Magnetic reconnection is also thought to be responsible around other planets like Jupiter and Saturn, though in slightly different ways.

NASA's Magnetospheric Multiscale spacecraft were designed and built to focus on understanding all aspects of magnetic reconnection. Using four identical spacecraft, the mission flies around Earth to catch magnetic reconnection in action. The results of the analyzed data can help scientists understand particle acceleration at relativistic speeds around Earth and across the universe.

3. Wave-Particle Interactions

Particles can be accelerated by interactions with electromagnetic waves, called wave-particle interactions. When electromagnetic waves collide, their fields can become compressed. Charged particles bouncing back and forth between the waves can gain energy similar to a ball bouncing between two merging walls.

These types of interactions are constantly occurring in near-Earth space and are responsible for accelerating particles to speeds that can damage electronics on spacecraft and satellites in space. NASA missions, like the Van Allen Probes, help scientists understand wave-particle interactions.

Wave-particle interactions are also thought to be responsible for accelerating some cosmic rays that originate outside our solar system. After a supernova explosion, a hot, dense shell of compressed gas called a blast wave is ejected away from the stellar core. Filled with magnetic fields and charged particles , wave-particle interactions in these bubbles can launch high-energy cosmic rays at 99.6% the speed of light. Wave-particle interactions may also be partially responsible for accelerating the solar wind and cosmic rays from the sun.

Provided by NASA's Goddard Space Flight Center

Explore further

Feedback to editors

light speed travel

Vintage museum collection and modern research intersect in century-long bee study

12 minutes ago

light speed travel

Frozen in time: Rock fossils hint at Mars's ancient climate

21 minutes ago

light speed travel

How special is the Milky Way galaxy? Survey team releases new findings

light speed travel

A detailed microscopic theory: Lifting the veil of topological censorship

light speed travel

Sustainable metal-recycling method reduces cost and greenhouse gas emissions

light speed travel

Study shows that ancient reef-building stromatoporoids dodged extinction—at least temporarily

light speed travel

Ice cores show pollution's impact on Arctic atmosphere

2 hours ago

light speed travel

How synchronization supports social interactions: Taking turns during conversations may help coordinate cues

3 hours ago

light speed travel

Study shows Mars' early thick atmosphere could be locked up in the planet's clay surface

light speed travel

Study suggests US politicians support climate action when linked to certain other environmental issues

Relevant physicsforums posts, why are the relative fluctuations of intensive properties so small.

Sep 23, 2024

Is Geometrical Optics Essential for a Deeper Understanding of Light?

How does output voltage of an electric guitar work.

Sep 16, 2024

Electromagnetic Skrymion Created

Sep 15, 2024

Looking for info on old, unlabeled Geissler tubes

Sep 13, 2024

Why does my ceiling glow in the dark?

Sep 8, 2024

More from Other Physics Topics

Related Stories

light speed travel

Studying magnetic space explosions with NASA missions

Mar 9, 2017

light speed travel

The case of the relativistic particles solved with NASA missions

May 29, 2018

light speed travel

A stellar achievement: Magnetized space winds in the laboratory

Nov 5, 2018

light speed travel

Wave-particle interactions allow collision-free energy transfer in space plasma

Sep 19, 2018

light speed travel

Scientists provide first-ever views of elusive energy explosion

Nov 15, 2018

Japanese researchers find new classes of electron orbits

Oct 5, 2016

Recommended for you

light speed travel

ALICE probes the strong interaction three-body problem with new measurements of hadron–deuteron correlations

4 hours ago

light speed travel

First observation of ultra-rare particle decay could uncover new physics

Sep 24, 2024

light speed travel

New physics needed? Experts suggest possibility of updating fundamental physics concepts

light speed travel

New results from the CMS experiment put W boson mass mystery to rest

Sep 22, 2024

light speed travel

Physicist finds tailwind has minimal impact on uphill cycling speed in Everesting challenges

Sep 20, 2024

light speed travel

Scientists propose a new method to search for dark matter using LIGO

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Have we made an object that could travel 1% the speed of light?

light speed travel

University Distinguished Professor of Astronomy, University of Arizona

Disclosure statement

Chris Impey receives funding from the National Science Foundation and the Hearst Foundation.

University of Arizona provides funding as a member of The Conversation US.

View all partners

Sun rising over Earth with light flaring into space.

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to [email protected] .

Have we made an object that could travel at at least 1% the speed of light? – Anadi, age 14, Jammu and Kashmir, India

Light is fast . In fact, it is the fastest thing that exists, and a law of the universe is that nothing can move faster than light. Light travels at 186,000 miles per second (300,000 kilometers per second) and can go from the Earth to the Moon in just over a second. Light can streak from Los Angeles to New York in less than the blink of an eye.

While 1% of anything doesn’t sound like much, with light, that’s still really fast – close to 7 million miles per hour! At 1% the speed of light, it would take a little over a second to get from Los Angeles to New York. This is more than 10,000 times faster than a commercial jet.

A spacecraft with the sun in the background.

The fastest things ever made

Bullets can go 2,600 mph (4,200 kmh), more than three times the speed of sound. The fastest aircraft is NASA’s X3 jet plane , with a top speed of 7,000 mph (11,200 kph). That sounds impressive, but it’s still only 0.001% the speed of light.

The fastest human-made objects are spacecraft. They use rockets to break free of the Earth’s gravity, which takes a speed of 25,000 mph (40,000 kmh). The spacecraft that is traveling the fastest is NASA’s Parker Solar Probe . After it launched from Earth in 2018, it skimmed the Sun’s scorching atmosphere and used the Sun’s gravity to reach 330,000 mph (535,000 kmh). That’s blindingly fast – yet only 0.05% of the speed of light.

Why even 1% of light speed is hard

What’s holding humanity back from reaching 1% of the speed of light? In a word, energy. Any object that’s moving has energy due to its motion. Physicists call this kinetic energy. To go faster, you need to increase kinetic energy. The problem is that it takes a lot of kinetic energy to increase speed. To make something go twice as fast takes four times the energy. Making something go three times as fast requires nine times the energy, and so on.

For example, to get a teenager who weighs 110 pounds (50 kilograms) to 1% of the speed of light would cost 200 trillion Joules (a measurement of energy). That’s roughly the same amount of energy that 2 million people in the U.S. use in a day.

A shiny golden-hued square with a small spacecraft attached in space with a planet in the background.

How fast can we go?

It’s possible to get something to 1% the speed of light, but it would just take an enormous amount of energy. Could humans make something go even faster?

Yes! But engineers need to figure out new ways to make things move in space. All rockets, even the sleek new rockets used by SpaceX and Blue Origins, burn rocket fuel that isn’t very different from gasoline in a car. The problem is that burning fuel is very inefficient.

Other methods for pushing a spacecraft involve using electric or magnetic forces . Nuclear fusion , the process that powers the Sun, is also much more efficient than chemical fuel.

Scientists are researching many other ways to go fast – even warp drives , the faster-than-light travel popularized by Star Trek.

One promising way to get something moving very fast is to use a solar sail. These are large, thin sheets of plastic attached to a spacecraft and designed so that sunlight can push on them, like wind in a normal sail. A few spacecraft have used solar sails to show that they work, and scientists think that a solar sail could propel spacecraft to 10% of the speed of light .

One day, when humanity is not limited to a tiny fraction of the speed of light, we might travel to the stars .

Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to [email protected] . Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.

  • Solar system
  • Speed of light
  • Curious Kids
  • Curious Kids US
  • Parker Solar Probe

light speed travel

Chief People & Culture Officer

Lecturer / senior lecturer in construction and project management.

light speed travel

Lecturer in Strategy Innovation and Entrepreneurship (Education Focused) (Identified)

light speed travel

Research Fellow in Dynamic Energy and Mass Budget Modelling

light speed travel

Communications Director

IMAGES

  1. NASA Explains How to Travel at 99.9 Percent of the Speed of Light

    light speed travel

  2. travel-at-light-speed-blue

    light speed travel

  3. If I were traveling at near the speed of light, would I be able to "think" normally

    light speed travel

  4. Is Light Speed Travel Possible? Exploring the Feasibility and Challenges of Achieving Faster

    light speed travel

  5. Space Light Speed Travel Hyperspace Stock Animation

    light speed travel

  6. Light Speed Travel Visualized

    light speed travel

VIDEO

  1. How Fast Light Can Travell

  2. Is There anything that Travels at the Speed of Light⁉️ Neil deGrasse Tyson #physics #universe

  3. Light Speed Travel: The Ultimate Challenge #cosmology #artificialintelligence #facts

  4. How Light Speed Travel Could Change Our Sense of Time #thoughtshot

  5. Light Speed Travel

  6. Faster Than Light Travel

COMMENTS

  1. Three Ways to Travel at (Nearly) the Speed of Light

    Learn about three ways that particles are accelerated to relativistic speeds in space: electromagnetic fields, magnetic explosions, and wave-particle interactions. These processes can affect spacecraft, astronauts, and the universe.

  2. Will Light-Speed Space Travel Ever Be Possible?

    According to Einstein's theory of relativity, the speed of light is a cosmic speed limit that cannot be surpassed. Learn why light-speed travel and faster-than-light travel are impossible for anything with mass, such as spacecraft and humans.

  3. How fast does light travel?

    The speed of light in a vacuum is 186,282 miles per second (299,792 kilometers per second), and in theory nothing can travel faster than light.

  4. Speed of light: How fast light travels, explained simply and clearly

    Learn how the speed of light was first measured, why it is a constant and what it means for relativity and physics. Find out how light slows down in different media and why nothing can go faster than light.

  5. Scientists Believe Light Speed Travel Is Possible. Here's How

    Here's How. Scientists Believe Light Speed Travel Is Possible. Here's How. A functioning warp drive would allow humans to reach the far ends of the cosmos in the blink of an eye. I n late 2020 ...

  6. Faster-Than-Light Travel Is Possible Within Einstein's Physics

    A new study by an astrophysicist proposes a way to achieve superluminal speeds without violating relativity, using hyper-fast solitons as warp bubbles. The method requires enormous amounts of energy and is only a theoretical possibility for now.

  7. Speed of light

    The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour). [Note 3] According to the special theory of relativity, c is the upper limit for the speed at which conventional matter or energy (and thus any signal ...

  8. Warp Speed Travel Is Theoretically Possible, Says Astrophysicist

    Astrophysicist Geraint Lewis explains that warp speed travel is theoretically possible if we can find a material with negative density energy and bend space. NASA's Eagleworks lab is investigating how to create and detect warp bubbles using a device called the White-Juday Warp Field Interferometer.

  9. How to Travel at (Nearly) the Speed of Light

    Explore the three ways that particles are accelerated to incredible speeds, some even reaching 99.9% the speed of light, in space. Learn about Einstein's theories of special and general relativity, and how they explain the behavior of light and matter.

  10. Why is the speed of light the way it is?

    That's because all massless particles are able to travel at this speed, and since light is massless, it can travel at that speed. And so, the speed of light became an important cornerstone of ...

  11. What is the speed of light?

    So, what is the speed of light? Light moves at an incredible 186,000 miles per second (300,000 kilometers per second), equivalent to almost 700 million mph (more than 1 billion km/h). That's fast ...

  12. What is the Speed of Light?

    Light travels at a constant speed of 1,079,252,848.8 (1.07 billion) km per hour. That works out to 299,792,458 m/s, or about 670,616,629 mph (miles per hour). To put that in perspective, if you ...

  13. NASA SVS

    Download. Near-light-speed Travel Guide. This handy video will help acquaint you with the quirks of near-light-speed travel, expected travel times, and the distances to some popular (at least, we think so) destinations! Credit: NASA's Goddard Space Flight Center. Music: "The Tiptoe Strut" from Universal Production Music.

  14. Will Light-Speed Travel Ever Become a Reality?

    The concept of light-speed travel revolves around the idea of moving at this incredible speed, or even faster. Imagine traversing the 238,855 miles to the moon in a little over a second. Or reaching the nearest star system, Alpha Centauri, a mere 4.3 light-years away, in just over four years instead of the tens of thousands of years it would ...

  15. The Universe: Breaking Barriers to Reach Light Speed (S3, E3)

    Join us as we highlight the trends that have defined us from the 1920s to now in History by the Decade - https://histv.co/ByTheDecadeAccording to the laws of...

  16. Scientists Just Made a Breakthrough For Interstellar Travel

    Nothing can travel faster than the speed of light, according to the gravity-bound principles of Albert Einstein's theory of general relativity. So the bubble is designed such that observers ...

  17. NASA's Guide to Near-light-speed Travel

    Before you fly to other galaxies, watch this video to learn about near-light-speed safety considerations, travel times and distances between popular destinations around the universe.

  18. Warp drives: Physicists give chances of faster-than-light space travel

    Lentz's solution would allow the bubble to travel faster than the speed of light. It is essential to point out that these exciting developments are mathematical models. As a physicist, I won't ...

  19. Here's What Would Happen If You Could Travel at the Speed of Light

    According to the video, if you're traveling at nearly the speed of light, the clock inside your rocket would show it takes less time to travel to your destination than it would on Earth. But ...

  20. Three ways to travel at (nearly) the speed of light

    The theory of special relativity showed that particles of light, photons, travel through a vacuum at a constant pace of 670,616,629 miles per hour—a speed that's immensely difficult to achieve ...

  21. Have we made an object that could travel 1% the speed of light?

    The fastest things ever made by humans are spacecraft, and the fastest spacecraft reached 330,000 mph - only 0.05% the speed of light. But there are ways to go faster.

  22. NASA's New Video Shows You What it's Like Traveling Close to the Speed

    For the sake of this video, titled " NASA's Guide to Near-light-speed Travel " (shown above), it is assumed that the interstellar traveler (who appears to be an alien creature) has built a ...

  23. What Would Happen If You Traveled At The Speed Of Light?

    When you traveled to Mars at 90% light speed, humanity on Earth was older by 16.67 minutes, while you aged by just 8.33 minutes! This difference in aging would become much more pronounced at higher speeds, say at 99.99% the speed of light. At 99.99% Speed Of Light. Now, suppose you could travel at 99.99% of the speed of light.